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ABSTRACT 

A relation between automorphic L-functions for U(n, n + 1) • GL(n) and 

those for U(n, n) • GL(n) in a theta series lifting is studied by using the 

Rankin-Selberg method. 

I n t r o d u c t i o n  

Let E be a quadratic extension of an algebraic number field E and let G = U(n, n) 
(resp. G* = U(n, n + 1)) be a quasi-split unitary group with respect to a skew 
Hermitian form on E 2n (resp. a Hermitian form on E 2n+l) with Witt  index n. 

We denote by RE/F(GL(n)) the scalar restriction of GL(n) defined over E. For 

irreducible cuspidal automorphic representations a, a* and ~ of G(A), G*(A) 
and RE/F (GL(n)) (A), respectively, one can define the (partial) automorphic L- 

functions Ls(s,a x ~) and Ls(s,a* • ~) by Euler products on some right half 

plane Re(s) > >  0. If a and a* are generic, it is known by Shahidi [Sh] that  these 

L-functions are analytically continued to meromorphic functions on the whole 

s-plane. On the other hand, there is a class of automorphic representations of 

G* (A) lifted from the cuspidal automorphic representations of G(A). This lifting 

depends on the choice of a nontrivial character # of F \ A  and a certain Hecke 

character u of E •  We denote by O~,,~(a) a lifting of a. It is known by 

[Wal] that  if a is generic, then O~,~(a) is nonzero and generic for some choice of 

#. The cuspidality condition of O~,~(a) was also given in [Wal]. Then a natural 

question is: How does Ls(s,O~,~(a) • ~) relate with Ls(s,a x ~)? Our main 

theorem answers this question. 

Received July 1, 1997 

93 



94 T. WATANABE Isr. J. Math. 

THEOREM: Assume that {3~,~(a) is cuspidal and irreducible. Then one has 

L n zr) Ls(s ,~)Ls(s ,a  x (~| s ( s , O . , ~ ( ~ )  • = 

where ~ is the twist of r by the Galois involution of E /F ,  i.e. ~(g) = zr(~), 

and Ls(s, ~) is the standard L-function of~ regarded as a cuspidal automorphic 
representation of GL~ (AE). 

We expect that such a relation between L-functions has an application to the 

characterization of the lifting image. (cf. [G-P2]) 

To prove this theorem, we need integral representations of L-functions. The 

Rankin Selberg method for the group of type G • GL(n) was established by 

Gelbart and Piatetski-Shapiro [G-P] when G is a classical split group of rank n. 

Their  method can also be applied to the cases G = U(n,n) and G = U(n,n+ 1). 

The case G = U(n, n + 1) essentially treated by Tamir ([Ta]) and the case G = 

U(n, n) is similarly investigated as the case of G = Sp(n). However, since we 

could not find adequate references for calculations of ramified primes of local 

integrals, we included necessary calculations of archimedean and finite ramified 

local integrals in this paper. 

We organize this paper as follows. In Sections 1 and 2, we prepare some 

notations and define the L-functions Ls(s, a x zr) and Ls(s, a* x ;r). In Section 

3, we recall Eisenstein series, Theta  series and basic identities deduced from 

Theorems A and C in [G-P]. In Section 4, the related local integrals are calculated 

and integral representations of L-functions completed. The main theorem is 

proved in Section 5. 

1. N o t a t i o n s  

For an associative ring R with identity element, we denote by R • the group of all 

invertible elements of R and by Mn,rn(R) the set of all n x m matrices with entries 

in R. If n -- m, we write Mn(R) for M~,n(R). For A e Mn,m(R), tA stands 

for its transpose. For A E Mn(R), det A and TrA stand for its determinant and 

trace, respectively. The identity matrix in M,~(R) is denoted by 1~. 

Let F be an algebraic number field and V F  the set of all places of F.  For 

v E VF,  Fv stands for the completion of F at v. If v is a finite place, Ov denotes 

the ring of integers in Fv, Pv the maximal ideal of Ov and q, the order of the 

residual field (9"/P~. The ring of adeles of F is denoted by A. Let E be a 

quadratic extenstion of F.  The Galois involution of E over F is denoted by a 

bar or e. We write AE for the ring of adeles of E.  The norm and the trace of E 
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over F are denoted by NE/F and TrE/F, respectively. Throughout  this paper, we 

fix a nontrivial additive character # of F \ A  and a character u of E x \A~ whose 

restriction to A • equals the quadratic character associated to E l F  by class field 

theory. 

If H is an F-algebraic group and R an F-algebra, H(R)  denotes the group of 

R-rational points of H.  We often consider H as an algebraic group defined over E 

and denote by RE/F(H) the scalar restriction of H, hence one has RE/F(H)(R)  --- 

H ( R  | E). The Galois group of E over F naturally acts on RE/F(H).  
We will use the following notations for F-subgroups of GL~. 

B0 the Borel subgroup of GLn consisting of upper triangular matrices, 

To the maximal torus consisting of diagonal matrices in GL~, 

A0 the unipotent radical of B0, 

Q0 the stabilizer in GLn of the vector ( 0 , . . . ,  0, 1) E MI,,,(F), 

Z0 the center of GL~. 

We define F-algebraic groups G and G* by 

G = {g E RE/F(GL2,~): tgJn-~ = Jn} ,  

G* = {g E RE/F(GL2n+I) : tgJng*- ---- "In* }, 

(o ) 
J n - -  -1,~ ' 

J,~-- 1 , 
In 0 

In this paper, we fix an element i E E • with i + i = 0, and an embedding 

~: G c-~ G*: 
o 

D ~-4 0 1 . 
i -~C 0 

We will consider the following F-subgroups of G*: 

{ (a )  a E RE/F(GLn) M * =  m*(a,E) = ~ : 
t_d_l ~ E RE/F(GL1), EE = 1 

T* = {m*(t,e): t E RE/F(To), ~ E RE/F(GL1), c ~ =  1},  

A* = {m*(5, 1): 5 E RE/F(AO)},  

_t~ b E RE/F(M,~), N * =  v*(b,c)--  1 
1,~ c C RE/F(Mn,1 ) 

tg = -b } . 
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Then P* = M* ~( N* is the standard maximal parabolic subgroup of G* which 

preserves a maximal isotropic subspace, U* = A* ~( N* is a maximal unipotent 

subgroup of G* and B* = T* ~( U* is a Borel subgroup of G*. If H* is one of 

the groups defined above, its inverse image ~-I(H*) is denoted by H, so that 

P = M ~< N is a Siegel type parabolic subgroup and B = T ~ U a Borel subgroup 

of G. The Levi subgroup M is identified with RE/F(GL,~). We will use the 

following notations for elements of M(A) and N(A): 

~ ( b ) = (  1~ l~b) 

(a e RE/F(GL~)(A) = GLn(AE)), 

(b e RE/F(Mn)(A) ---- Mn(AE), t~ = b). 

The standard maximal compact subgroups of GL,~(A), RE/F(GL,)(A), G(A) 

and G*(A) will be denoted by K0 = 1-I. K0,., g l  = 1-I. gl,v, g = I-I,~ Kv and 
K* -- 1-I~ K*, respectively. We define nondegenerate characters r r and r of 

A0(A), U(A)and  U*(A), respectively, as follows: 

r = ,(~12 + ~2~ + . . .  + ~ - 1 ~ ) ,  (~ = (~,3) e Ao(A)), 

r  = ~ (Tr~ /F (~ I~  + ~23 + " "  + ~ - 1 ~ )  - u~2~), (~ = ( ~ )  e U(A)), 

r = ~(WrE/~(~2 + ~;3 +""  + u~,+~)), (u* = (~*j) e U*(A)). 

The restriction of r to A(A) is denoted by CA. 

Throughout this paper, we fix irreducible cuspidal automorphic representations 

(a, V~), (a*, V~.) and (u, V~) of G(A), G*(A) and M(A) ~ GLn(AE), respectively. 

For cusp forms ~ E V~, ~* C V,. and (I) E V~, we define 

w,(g)  = 

w , .  (~*) = 

w ~ ( m )  = 

U(F)\U(A) r 

U*(F)\U*(A) r *)du*' 

/A(F)VX(A) Ca (5)(I)(Sm)dS. 

Then Whittaker models of a, a* and lr are given by 

w ( o , r  = {w~: v e y~}, w(~* ,r  = {w~.  : ~* e y~.}, 

w ( . ,  r = { w . :  r e y~}. 
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We assume that  both a and a* are generic, i.e. W(a , r  r 0 and W(a*,r  r 0. 

Let w~,wo, and w~ be central characters of a, a* and lr, respectively. There is a 

unique real number r~ such that [w,~(m(al,~)) I = [al-~: ~/n for any a E A~. Then 

r | [ det(.)]~E becomes a unitary cuspidal automorphic representation. 

For each v E VF,  we denote the corresponding local Whittaker models by 

W(av, ~b,), W(a*, r and W ( r . ,  r  If v is archimedean, we will often use 

the conventions of [J-S3]. Let gv be the Lie algebra of G(F~). By a theorem of 

Casselman and Wallach [C], the irreducible (gv, K.)-module V~ can be realized 

as the (fl., K,)-module coming from a continuous representation of G(F,) on a 

Frechet space V~~ which is smooth and with moderate growth. This continuous 

representation will be also denoted by av. There is a unique (up to constant) 

continuous Whittaker functional Av on V~.  We denote by W ~ (av, r  the space 

of all functions on G(F~) of the form g ~ Av(a,(g)x), x C V~. Then W(a~,r 

is a subspace consisting of all K.-finite vectors in W~176162  To unify the 

notations, for a finite v C VF, we sometime write V~  and W ~ 1 7 6 1 6 2  for V~ v 

and W ( a , , r  respectively. In a similar fashion, we define W~176162 *) and 
WO~(Ir~, -1 r  for each v C VF. 

We will denote by VF (a, a*, It, #, v) the set of finite places v E VF such that  all 

data  a . ,  a*, 7r~, # .  and v. are unramified. The complement of VF(O" , or*, 7r, Iz, ~,) 

in VF will be denoted by S. 

2. Def in i t ion  o f  L- funct ions  

We recall a definition of partial automorphic L-functions Ls(s,a x zr) and 

Ls(s, a* x 7r). Let rE~ F : {e, (} be the Galois group of E over F.  L-groups of 

G x M a n d G *  x M a r e  

L(G • M) = (GL2n(C) x GL.(C) x GL,~(C)) ~ FE/F, 

L(G* • M) = (CL2n+l(C) x GL.(C) x GL,~(C)) ~ FE/F, 

respectively. Let pm (resp. pO) be the standard (resp. trivial) representation of 

GLm(C). Then P2n | P,~ @ pO (resp. P2,~+l | pn @ pO) is a representation of the 

group L(G X M) ~ (resp. L(G* x M) ~ of the identity component of L(G • M) 

(resp. L(G* x M)). We denote by r (resp. r*) the representation of L(G x M) 
(resp. L(G* x M)) induced from P2n | Pn | pO (resp. P2,~+l | Pn | pO). 

If v E VF\S remains prime in E and Satake parameters of av, a* and ~rv are 

given by (a , ,1 , . . .  , c~v,~), (a*, l , . . .  , a*,,~) and (j3,,1,. �9 �9 , ~,,n), respectively, then 
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we put  

/  vl 1)(  vi 

//1 11/( 
s 

If v C V F \ S  splits in E and Satake parameters  of av, a~ and ~r. are given 

(9/* . . . .  by ( av ,1 , " "  ,av,2n), ( .,1, " ,a*,2n+l)  and ((j3v,1,"" ,j3v,n),(j3~,l, " , ~ , n ) ) ,  
respectively, then we put  

Olv,2n 

O~v,2n+ l 

V~n 

"" " ~t / )4 e. 

V~T~ 

The  Euler  factors Lv(s, av x rv)  and L,(s, a* x rv)  are defined to be 

Lv(s, crv • 7r~) = det(lan2 - r(~/v)qvS) -1,  
* * * - s  -1  L,(s, av • ~v) = det(12n(2n+l) - r  ( % ) q , )  . 

It is known tha t  bo th  Euler  products  

Ls(s ,a  x ~r) = H L,(s, av x ~v), 
vr 

Ls(s,a* x r) = YI  Lv(s,a* x rv) 
vr 

are absolutdly convergent in Re(s) > >  0. In the following sections, we will prove 

tha t  bo th  L-functions Ls(s, a x r )  and Ls(s, a* • ~r) have analytic continuat ions 

to meromorphic  functions on the whole s-plane. 

3. Bas i c  ident i t i e s  

In this section, we define Eisenstein series and the ta  series on G(A), and recall the 

basic identities. Let  c~: M(A) -~ C • be the quasicharacter  defined as c~(m(a)) = 
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] det aiA~. By using the Iwasawa decomposition, the quasicharacter a is extended 

to a function on G(A), i.e. a(umk) = (~(m) for u E N(A), m E M(A) and k e K. 
InA G(A) C~s For each s E C, we denote by . . . .  P(A) ~ | the representation space of G(A) 

lnrl G(A) c~s induced from the cuspidal representation n @ ~ .  Namely, --~P(A) ~ | is the 

space of all functions ~ :  G(A) -+ V. satisfying 

L (umg) ~- a(m)S+n127r(m)(L (g)) 

for any u E N(A), m E M(A) and g E G(A). By evaluating cusp form ~(g)  E V~ 

at identity 12n, we obtain a complex-valued function fs(g) = fs(g)(12n) in g E 

G(A). We denote by I(Tr| s+n/2) the space consisting of those functions f8 which 

are smooth and K-finite�9 Furthermore, we denote by W(I(~r | a~+'~/2), r the 

space spanned by all functions of the form 

f 
(g) -- ] r (5)f~ (Sg)d5 

JA (F)\A(A) 

For each f E I(Tr), we define 

E(s, f, g) = 

(f8 E I (n  | a8+~/2)). 

E a(Tg)S+n/2f(Tg)" 
"TEP(F)\G(F) 

The series of the right-hand side is absolutely convergent for Re(s) > >  0 and 

extends to a meromorphic function on the whole s-plane. The normalizing factor 

of E(s , f ,g)  is given as follows�9 Let LM = (GLn(C) x GL,~(C)) )~ FE/F be the 

L-group of M. We define the representation r l :  LM ~ Aut(Mn(C)) by 

rl((gl,g2) >4 E)X t t (X = gl X g2 E Mn(C)). 

For v E VF\S, the semisimple element ~,~ E LM corresponding to the unramified 

representatibn lr. is given by 

Then we put 

if v remains prime in E, 

L. ( s , r . , r l )  = det(1,~ - , ~ -1 

if v splits in E. 
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The Euler product 

Ls(s,~v, rl) = y~ Lv(s, Tfv, rl) 
yes 

converges absolutely for Re(s) > >  o. It is known by IF] and IF-Z] or [Sh] that 

Ls(s, ~v, r l )  has an analytic continuation to a meromorphic function on C. 

Next, we define theta series on G(A). Let Sp4 . be the symplectic group of 

size 4n defined over F. Then G(A) is naturally embedded in Sp4~(A ). Let 

Mp4n(A ) -+ Sp4n(A ) be the metaplectic covering and (w~,$(RE/F(M~,I)(A))) 
the Well representation of Mpan(A ) associated with #. By [G-R], a fixed pair 

(#, v) determines a compatible splitting s,,v : G(A) --+ Mpa~(A ) of the metaplec- 

tic covering. We denote by w~,~, or simply w, the representation g ~-~ wt,(s~,~(g)) 
of G(A). We have precisely 

w(m(a)v(b) )~(x) = v(det a)c~(m(a) )U2 tt(tSabt~x)~(t-Sx), 

w(J~)~(x) = fM~.I(As)#(TrE/F(tyx))y(y)dy" 

Let So(RE/F(Mn,1)(A)) be the set of K-finite functions in S(RE/F(M~j) (A)) .  

For each ~ E So(RE/F(Mnj)(A)), the theta series 0~ is defined to be 

XERE/F(M~j)(F) 

If we put 

then we have 

Rn(g ) = w(g)~(en), e~ = E M,~,I(F), 

0 (g) = + 

Q(F)\M(E) 

where Q = {re(a) E M:  t~En = gn} is a subgroup of M. 

We fix ~ E V~, 9" E V~., f E I(~r) and ~? E So(RE/F(M,~,I)(A)). Then we 

define global zeta integrals as 

g(s,~,f,~) = f ~(g)E(s,f,g)O'~(g)dg, JG (F)\G(A) 

J*(s,~*,f) = / V*(L(g))E(s,f,g)dg. 
JG (F)\G(A) 

The following theorem is due to Gelbart and Piatetski-Shapiro. 
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THEOREM ([G-P, Theorems A and C]): For Re(s) >:> 0, one has 

J(s, ~, f, ~) = /u  W~(g)Wf(g)R~(g)a(g)S+n/2dg' 
(A)\C(A) 

J* (s, ~*, f) = / Wv. (t(g))Wf(g)a(g)~+n/2dg. 
Ju (A)\C(A) 

We assume that all ~, ~*, f and ~ are decomposable, so that we have 

w~(g) = II wv(~.), w~.(h)= II w:(hv), 
vEVF vEVF 

Ws(g)= H W:(g.), R,(g)= II R,.(g.) (R,v(g.)=J3(g.)v.(enl). 
vEVF vEVF 

Then the corresponding local integrals are given by 

J~(s, W., W', Rv.) = Iv Wv(g)W'(g)Rw (g)a~(g)S+n/2dg' 
(F.)\C(F.) 

J*(s, W*, W') = /u  W*(~(g))W'(g)a'(g)S+n/2dg" 
(F.)\C(F.) 

In the rest of this section, we assume that v splits in E. Then E| "~ F~@Fv 
and a projection onto the first factor induces isomorphisms G(F~) "~ GL2~(F.) 

and G*(F.) -~ GL2~+I(F.), so that we identify these groups. We rewrite the 

integrands of the local zeta integrals according to these identifications. We mainly 

consider the function 

Wv(m)W'(m)R,7.(m)av(m) "+n/2 (m E M(Fv)) 

for Wv E Woo(ov,r W~v C Woo(I(rv),r and ~?v E S(RE/F(Mn,I)(Fv)). 
The groups M(Fv) and N(Fv) are written as 

M(Fv)={m(al 'a2):  ( al ) )} ta2_l : al, a2 E GL~(F~ , 

N(Fv)={v (b )=( ln  b )  )} in : bE M,~(F, . 

The homomorphism (al,a2) ~-~ m(al,a2) maps Ao(Fv) x Ao(Fv ) to A(Fv). No- 

tice that the maximal unipotent subgroup U(Fv) = A(Fv) ~(N(F,,) of GL2n(Fv) 

is not the group of upper triangular unipotent matrices. Every Wv E W ~ (av, Cv) 
satisfies 

w~(m(~l, ~2)v(b)g) = ~0,~(~l~2)~(-bn.)W~(g) 
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for any 51, (~2 E m o ( F v )  , b = (bij) �9 Mn(F.) and g E GL2n(F. ) .  If  we take 

.=(~ 1 10)  
then  m ( l n ,  w,~)U(F~)m(ln, w . )  -1 is the upper  t r iangular  unipotent  subgroup  of 

GL2=(Fv),  and hence the function (W.)~'"(g) = W.(m(ln,wn)g) becomes  an 

ord inary  Whi t t ake r  function of GL2n(Fv),  i.e. (W.)  w" satisfies 

i U12 ~Z23 " " " ~ 2rt 1 ?~23 " " " Zt2 2n 
. . 9 )  

�9 -- ]. 

= /Zv(Ul2 - 4 - ' "  + U n - l n  - -  U n n + l  - -  U n + l  n+2 . . . . .  U 2 n - 1 2 n ) ( W v ) W " ( g )  �9 

The  representa t ion  7% o m of G L n ( F . )  • GL,~(F.)  is wr i t ten  as Try, 1 | 71"%2 , where 

bo th  r . ,1  and  lr~,2 are irreducible admissible representat ions of GL,~(F~). We 

denote  by W ~ ( % i ,  -1 , r  the Whi t t ake r  model  of 7%# with respect  to ~0.~ for 
WOO --1 OO - 1  oo --1 i = 1,2. Since (7%,~h~x,~) is identified with W ( r ~ , x , r 1 7 4  (%,2,r  

we may  assume W~ is of the form 

Wtv(m(al, a2)) = Wvt,1 (al)Wtv,2(a2), 

where W ~ oo -1 W ~ WO~@ .~.- l~ The  charac ter  v~ of ,,,t E W (%, t , r  and  .,2 E ~ ~,2,~0,~))" 
(E  | F~) • is wr i t t en  as v.,1 | v.,2, where bo th  Vv,X and v.,2 are characters  of 

v -1 Let so , .  be  the  quas icharacter  Fv x . By  the  a s sumpt ion  on v, we have vv,1 = ~,2. 

of GL,~(F.)  defined as ao,o(g) = IdetglF~.  If we take r/. of the form r/.,2 | r/.,~ 

(T/~,~,r/v,2 E S(M~, I (F~) ) ,  then  

0)n (/12(al,  a2))?~v (Xl ,  x2)  

= uv,l(detal)uv,2(deta2)t~o,v(ala2)~/2~v,l(talxl)~lv,2(ta2x2). 

Therefore ,  

Rv, ( m ( a l ,  a2)) = Vv,l(det al)vv,2(det  a2)c~o,,(ala2)l/2~,,1 ( ta l~n)%,2(ta2en) .  

Summing  up, we have 

a )F 

(3.1) = Wv(m(al,a2))Wlv,l(al)Wlv,2(a2 ) 
• v.,1 (det al)uv,2(det a2)rlv,l(talr 
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In a similar fashion, we obtain for m*(al, a2) = t(m(al,  a2)) 

W : ( m  * ( a l ,  a2))Wtv(m*(al, a2))OLv(m *(al, a2) ) 
(a.2) 

= W : ( m * ( a , ,  a~))W',~(ai)W'2(a~),~o,,(ala~) ~+''~+~/~. 

We give some formula of W.(m(al, a2)) (resp. W*(m*(al, a2))) when a .  (resp. 
a~) is realized as a quotient of a representation induced from a representation of 

M(F.)  (resp. M*(F~)). Let zv,1, ~-.,2, 7-*,1 and ~'*,2 be admissible representations 

of GLn(F~) and X* be a quasicharacter of GLI(F~). Then T~ = T~,I | Tv,2 and 

T* = T*,X | X~ | ~-*,2 are regarded as representations of M(F.)  and M*(F~), 
respectively, by 

~ ( m ( a l ,  a2)) -- ~ , l ( a l )  | ~,2(a2),  (el) 
4 (  ~ ~a~ 1 ) = ~ , l ( a i )  | ~*(~) | ~ ,2(a2) .  

Let tp  (resp. tp , )  be the parabolic subgroup opposite to P (resp. P*). We 
T jG(F,,) (resp. " .G*(F. )  denote by lnu~p(F. ) "rv lnCltp.(F~) ~-*) the representation induced from Tv 

T_~G(F.) (resp. ~-*). Namely, --Utp(F.) 7-. consists of all smooth functions f :  G(Fv) --+ 
V ~  1 | V ~  2 satisfying 

f ( ( a :  taO1)g)=O~o,v(ala2)_n/2Tv,l(al)@Tv,2(a2)f(g) 

. .G*(Fv) , for all al,a2 C GL. (F . ) ,  u E M,~(F.) and g E G(F.). Similarly, ln(l~p.(F,,) ~" v 
consists of all smooth functions f*:  G*(F.) --~ V~.~ | V~.~, 2 satisfying 

( 10 00) 
f*( Ye ta21 g)=ao,.(ala2)-(n+l)/2X*(e)~-*,l(al)| ) 

for all al,a2 E GL~(F.) ,  ~ E GLI(F.) ,  u e M,~(Fv), x ,y  E M,~,I(F.) and 
g E G*(F.). In the rest of this section, we assume that a .  (resp. a*) is an 

.G(F.) (resp. T-AG*(F') irreducible quotient of lnatp(F. ) 7- v . . . .  tp.(F.) Tv). This is always true if 

v is archimedean. Then Tv (resp. T*) is generic and the Whittaker model of a .  
~ .a(F.) (resp. T -~c*(F')  (resp. a*) is equal to the Whittaker model oi  lnOtp(F.) "Iv ~UUtp.(F,, ) T*). 

For i = 1,2, denote by W~176162 ) (resp. W~176162 the Whittaker 

model of ~-.# (resp. T*,/) with respect to r The next Lemma follows from the 
same method as that of the proof of [J-S3, Lemma 10.1] and [J-P-S, Proposition 

(9,1)]. 
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LEMMA 1: The notation being as above: 

(1) Forgiven W.,~ �9 Woo(~'.,l, r W.,2 �9 W~162 andCv �9 S(M~(Fv)), 
there is an element W.,o �9 Woo(av, ~ )  such that 

Wv,o(m(al, a2)) -- Wv,l (al)Wv,2(a2)r a2Wnglnal)o~o,v(ala2) n/2' 

where Cln �9 Mn(F.) is the matrix whose (1,n) component is 1 and other 
components are 0. 

(2) For given W*,l E Woo(T*,l,r �9 Woo(T*,2,r ) and r162 v,2 �9 

S(M~,I(F~)), there is an element W*,o �9 W~176 *, r  such that 

W:,o(m*(al, a2)) = W:,l (al)W:,2(a2)r (t alCn)r a2En)Olo,v(ala2) (n+1)/2. 

4. In t eg ra l  r e p r e s e n t a t i o n s  of  L-funct ions  

Explicit computations of J*(s, W*, W~) for unramified data were accomplished 

by Tamir. 

LEMMA 2 ([Ta]): Let W*,o and Wr o be the class 1 Whittaker functions in 
W(a*, r and W(I(Tr.) ,r  respectively, normalized so that W~*o(12n+l ) = 

W~,o(12n ) -- 1. Then one has 

Lv(s + 1/2, o* • 
J;(s'W*'~176 L . ( 2 s §  l,~rv,rl) 

By a slight modification of Tamir's method, we can compute J .  (s, W~, W~, R.),  
i.e. we obtain 

LEMMA 3: Let W.,o E W ( a . , r  and W' v,O �9 W(I(~rv),r be the class 1 

Whittaker functions, and let rl.,o be the characteristic function of Mn, I(OE.). 
Then one has 

Jr(s, Wv,o, W'v,o, Rn~,o) = Lv(s + 1/2, a .  x (~r. | uv)) 
L~(2s + 1, Try, rl)  

Next, we calculate the local integrals for ramified primes. We assume that 

v is an archimedean place. Let ,-qo(RE/F(Mn,1)(F.)) be the space of Kv-finite 

functions in S(RE/F(M,~,I)(F.)). 

LEMMA 4: For W. E Woo(a~,r �9 Woo(a*,r �9 Woo(I(lr.),r 

and 71. �9 So(RE/F(Mn.~)(F.)), both J.(s, W., W~,R. .)  and J*(s, W*, W~) are 
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absolutely convergent for Re(s) > >  0 and extend to meromorphic functions on 
the whole s-plane. 

Proof'. We consider the integral Jr(s, Wv, W~, R~v ). Since ~v is Kv-finite, it is 
enough to determine the absolute convergence and the analytic continuation of 

(4.1) fT(V.) W~(t)W'~(t)R,~ (t)a,(t)s+n/2dB(F.)(t)-' dt, 

where 5e(Fv) denotes the modular character of B(Fv). 
First we assume that v remains prime in E. We denote by w, v the central 

character of zr,. We put 

a = diag(tzt2-.,  t~, t2--" t ,~, . . . ,  tn) C RE/F(To)(F,) 

and t = re(a) C T(F~). By a similar argument to [So, Proposition (3.3)] and 

[J-S2, Proposition 1 or 2], we know that W~ and W$ are of the forms 

Wv(t) = E ea( t l  . . . .  ,tn)a(tl,...,tn), 
aEX~. 

(4.2) 
W'(t)=w~o(tn) ~ r  ,t,~-l)~(tl,... ,t,~-l), 

~6X~ 

where X ~  (resp. X ~ )  is a finite set of finite functions a on (E~X) ~ (resp. 
on (E~)  ~-1 ) and r (resp. r are Schwartz-Bruhat functions on (E~) n (resp. 

(Ev)~-l) .  Furthermore, R~(t) is of the form 

rl~(~ne~)u~(tlt 2 n 2 +n11/2 "''tn)ltlt2"''~n,E. " 

Thus (4.1) is a linear combination of integrals of the form 

f(E r  t,~)a(t~,.., tn)r  tn-1)/3(t~,.., t,~-~)nv(~,~zn) 
:)= 

(t.) lZI v. (tj)J + /2)+j -2nj+j/2dx tl"'" d • t~. 
3=1 

It is well known that this integral converges absolutely for Re(s) > >  0 and 

extends to a meromorphic function. 
Next we assume that v splits in E. By (3.1), the integral (4.1) is equal to 

fT.(F~) x To(F.) W,(m(al, a2))W~, 1 (al)W',2(a2)v,,l (det al)v~,2 (det a2) 
(4.3) 

X ~lv,l(ta1~n)rlv,2(ta2en)aO,v(ala2)S+n/2+1/25Bo(F~)(ala2)-ldalda2, 
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where 5Bo(F.) denotes the modular  character  of Bo(F.). We put  

ai = diag(ti l t i2""timti2""tin, . . .  ,tin) E To(F,) ( i - - 1 , 2 ) .  

Let  w~.,~ be the central character  of %,i for i = 1,2. By [J-S, Proposi t ion 1], 

W~,i(ai ) is of the form 

W~#(ai) = w~..~(tin) E CZ(,)(til,.-. ,tin-1)~(i)(til,... ,tin--l) 
/3(i) EX~.,~ 

for i = 1,2. Here X~.,~ is a finite set of finite functions/3(i) on ( F x )  '~-1 and 

CZ(.) are Schwar tz -Bruha t  functions on (Fv) n-1.  We evaluate W.(m(al,  a2)) by 

applying [J-S, Proposi t ion 1] to (Wv) wn(m(al ,a2)) .  Then  W~(m(al,a2)) is of 

the form 

wa~(t21""t2n)-1 E Ca(tll,...,tln--l,tlnt2n,t2n--1,...,t21) 
e~EXav 

x a( tH, . . .  ,t,n-l,tlnt2n,t2,~--l,.. .  ,t21). 

Here w ~  denotes the central character  of av, X . .  is a finite set of finite functions 

a on (F .  x)2n-1 and Ca are Schwar tz-Bruhat  functions on (Fv) 2n-1. Therefore,  

(4.3) is a finite linear combinat ion of integrals of the form 

(4.4) 

(F~ C a ( t l l , . . .  , t ln- l , t ln t2n, t2n- l , . . .  ,t21) 

X a(t11,... , tl ~-1, tl~t2~, t2 n -  1 , ' ' '  , t21 )W~. (t21 �9 �9 �9 t2n ) - i  

x ~,%,~ (ti,~)r (t~l, �9 �9 �9  t~ n_ l )~  (i) ( t i l , . . . ,  ti ~-l)rl~,i(ti,~e,~) 

We change the variable t in to tlnt2~. Then  the integral in the variable t2n is 

equal to 

/F W~, (t2~)--lW~., (t2~)-lW~,~ (t~)~,l(t l~t~le~)~,~(t~e~)d x t2~. 
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If we denote this by r then r is regarded as a Schwartz-Bruhat function on 

Fv. Thus (4.4) is equal to 

/ F ~  r  ,tl,~-l,Q~,t2~-l,... ,t21) 
)2n--1 

X G~(tll, . . .  , t  l n _ l , t l n , t 2 n _ l , . . .  , t21)r  -1 

x{i=Hlwr.,.(tin)r } 

[~ ~n .~ ( s + n / 2 + l / 2 ) n  j x ~  
• V v , l U ' l n )  I"1n F,~ a L l l ' " d X t 2 n - 1  �9 

This integral converges absolutely for Re(s) > >  0 and extends to a meromorphic 

function on C. 
In a similar fashion, we can prove the absolute convergence and the analytic 

continuation of the integral J* (s, W~, W')  (cf. [So, Section 5]). II 

LEMMA 5: There exist W.,o e W(a~, r W'.,o �9 W(I(Trv), r and 71~,o �9 
So(RE[F(M~,I)(F.)) such that J.(s, W.,o, W',0, r/v,0) ~ 0 for a given s �9 C with 
Re(s) > >  0. 

Proof: First, we assume that v remains prime in E. Let KI, .  be the standard 

maximalcompact  subgroup of GL~(E.) .  We put 

KM,~ = M(Fv) N K.  = {m(ki) : kl e Kl,v}, 

Z + = { m ( r l . ) :  r > 0}. 

Since M(Fv) = Q(F.)Z+ KM,~, J.(s, W~, W', Ruv ) equals 

A(F.)\M(Fv)K. W.(mk)W" (mk)R,v (mk)a.(mk)8-n/2dmdk 

: fKMv,   fz • 
x {/AeF~)\Q(F.) W'(pzkk')W~v(pzkk')av(P)~-n/2dp}dzdkdk" 

We take a W.,o e W(a., Cv) such that W~,0(12,~) r 0. It follows from (4.2) that 

for Re(s) > >  0, a~W.,o is square integrable on A(F.)\Q(F.). In other words, 

a.W.,o is contained in the L2-induction space ~. - . . . .  a(F.) ~pA,.. On the other 
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7"7r I ! hand, by [J-S1, Proposition 3.8], the space {a. W~IQ(G): W~, e W(I(Tr.), r 

is dense in -2~  .Q(F.) -1 W(I(%), r such that L -maZX(F.) Ca,.. Thus there exists W/ v,O G 

fA(F.)\Q(Fv) W~'~176 r 0 

for a given s with Re(s) >>  O. We put 

q/~ (W.,0, W;,o; zk) = f~ Wv,o(pzk)W;,o(PZk)C~v(pZ)~-'#2dp. 
(F,,)\Q(F,,) 

C~tR x For/3 C o t +) and ~ E C~(Qo(Ev) MKI,~ \K] , . ) ,  define the function r/~| 

$(Mn,I(E.)) by 

S /3(r)~(kl) if x = t-klren e Kl.vI~_en, 
L 0 otherwise. 

Then, 

f Z  ! ! " 
+ x(Q(Fv)NKM,,,\KM,,) I~s(Wv'~ wv'O' zk)Rrlo| (zk)dzdk 

= s ,~'(W~,o,  ' �9 �9 Wv,o, m(rl.)m( kl ) ) /3(r)~ ( kl )d x rdkl 

ko~8(Wv,o, W~ zk)R., o(zk)dzdk # O. o; 
+ x(Q(F~)f'IKM,,,\KM,o) ' ' 

We put 

%(W.,o, W'o,R.oo;k') 

= UZ + x(Q(Fv)NKM,v\KM,v) 
~s (W.,o, W~,o; zkk')Rn.,o (zkk')dzdk. 

Let C~. (KM,v\Kv) be the space consisting of smooth, right Kv-finite and left 
KM,~-invariant functions on Kv. For ~' E C~. (KM,v\Kv), define the function 

w'0 | ~' on C(Fv) by 

Wr o | = W~.o(umk')~'(k' ) (u E N(F,.), m E M(F.) ,  k' C K.).  

Since ~(Wv,o, Wv~,0; 12n) 7 ~ 0, we can take/3 and ~ such that the last integral is 
nonzero. Therefore, there exists r/v,O C So(Mn,1 (E.)) such that 
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Then W'~,o | ~ ' � 9  W(I(%), r and 

f K  i I R ko ~(Wv,o, W~,o | ~ , ,7~,o; k')dk' 
M. \K. 

s ' . = kO~ (Wv,o, Wv,o, R..,o, k')~'(k')dk'. 
M v \ g v  

If ~' is taken so that the last integral is nonzero, then we have 

J~ (s, W~,o, W' ' R #0. 
Next, we assume that  v splits in E. If we can prove that there exist W.,o �9 

W(av, ~.) and W' v,o �9 W(I(Ir,,), ~ 1 )  such that 

(4.5) /A(F.)\Q(F.) W~'~176 # O, 

then we can use the same argument as that of the previous paragraph to prove 

the assertion. Following the convention of Section 3, we identify G(F.) with 

GL2n(F.) and Try with rv,1 | rv,2. Since a .  is irreducibe and generic, it is 

realized as an irreducible quotient representation of an induced representation 
i.~lG(F~) "'~P(F.) T.,1 | T.,2, where T.,1 and %,2 are generic representations of GL,~(F.). 

By Lemma 1 (1), for given Wv,1 �9 W(T~,z, Co,v), W.,2 �9 W(Tv,2, ~)O,v) and r �9 
S(M,~(Fv)), there is an element Wv,o �9 W~176 ~Pv) such that 

Wv,o(m(al, a2)) = Wv,l (al)Wv,2(a2)r a2wncl .al)o~o,v(ala2) n/2. 

If Wv,z, Wv,2 and r are taken as Wvj( ln)  ~ 0, Wv,2(ln) ~ 0 and r = 1, 
then we have 

Wv,o(m(al,a2)) = Wv,l(al)Wv,2(a2)o~o,v(ala2) n/2 (al,a2 �9 Qo(Fv)). 

For i = 1,2 and Re(s) > >  0, a~),vWv,ilQoCf.) is contained in the space L 2- 

i .Qo(F.) r. , W ' .  �9 W( l r . , i , r  is dense naao(F. ) r Since the space (ao,.W',ilQo(F.): .,~ 
in_r2 _In.tQ~ r there is a W'.,~. �9 W(rv,i,r such that 

/A ! ! ! ! s--n/2 ! Wv,i(p )W~,i(P )ao,.(p ) dp r 0 
o(F~)\Qo(Fv) 

f o rag ivensECwi thRe( s )>>Oand i=l ,2 .  If  we set W'v,O --~V!v,1 @ W;,2, 

then we have (4.5). Since W ~ is taken as Kv-finite, Wv,o can be also taken in v,0 
m 
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In the case of G*, we can use an argument of [So, Proposition (7.2)]. Since v 

is archimedean and Try is generic, there is a generic admissible representation rv 
* . G * ( F v )  , of M*(F,) such that a* is realized as a quotient representation of ln(1,p.(F.) T v . 

O 0  * * * * Let W (%, ~b~) be the Whittaker model of % with respect to r For W~* E 

W~176162 W" E W~162 and r E S(RE/F(Mn3)(Fv)), we put 

A*(s, ~" ' w ;  , w ; )  

= f W~* (m(a))W~v(m(a))r 
J R E / F ( A o ) ( F v ) \ R E / F ( G L n ) ( F v )  

In the same way as [So, Proposition (7.2)], we obtain the following: 

oo * * ! W O O { T c  ~ l , - 1  ~ �9 LEMMA 6: For given W~* E W (%,r  W~ E ~ ,~'A,,J, and Cv E 

S(RE/F(Mn,1)(Fv)), there are W *(j) E W ~ ( a * , r  *) and Wv tU) E 

CA,~), 1 <_ j <_ t, such that 

~-~ J*(s, W*(J), W~ (j)) = A*(s, W:*, W;). 
j----1 

In particular, for a given s E C, there are Wv, 0 E W~176162 *) and W~v,o E 
W~(I(Tr,),r such that Jv(s,W*,o,W~v,o) r O. f iRe(s )  > >  0, we can take 

W;,o and w '  * * ;, .,0 as elements in W ( a, , r ) and W ( I ( Tr~ ) , r , respectively. 

When n = 1, Koseki and Oda have explicitly computed J* (s, W*, W')  provided 

that  a* belongs to the large discrete series. Their result states that the "g.c.d." of 

the integrals J*(s, W*, W') turns out to be a product of three gamma functions 

([K-O, Theorem (6.8)]). 

Finally we calculate finite ramified local integrals. Let v be a finite prime. 

The following Lemma is obtained by an analogous calculation as in the proof of 

Lemma 4. 

LEMMA 7: Both integrals J,(s, W~, W' ,Rn,  ) and J*(s, W*, W'v) are absolutely 
convergent for Re(s) > >  0 and become rational functions of q~ s. 

We prove that  both Jr(s, Wv, W',  Rn. ) and J*(s, W~, W'v) can be made con- 

stant for some W., W*, W" and ~.. We need some Lemma when v splits in E. In 

this case, let s = 2n or 2n + 1. For 0 _< j _< n, Pj stands for the standard upper 

triangular parabolic subgroup of GLt with Levi factor GLj • (GL1) t-2j  x GLj.  

Let Nj be the unipotent radical of Pj, which is written as 

Nj = u~(~,x,y,z) = 0 ~ ty : ~ E U~-2~, x, y e Mj,e_23, z E Mj . 
0 0 lj  
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Here Ue-2j denotes the maximal upper triangular unipotent subgroup of (]Le-2j. 
Let Ce be the character of Ne(Fv) = Ue(Fv) defined by 

~)e((uij))=S pv(Ul2§247 . . . . .  U2n_12n) if g = 2n, 
I #~(u12 + "'" + u,~n+t - Un+l,~+2 . . . . .  u2,~2n+l) if g = 2n + 1. 

Since Pj contains U~, we can consider the representation of Pj (F~) induced from 
�9 ,RAFt) , (resp. . BAf.) , ,  r Thus we denote by mUvdF~ ) ~p~ c-mdudf. ) ~p~) the space of all lo- 

cally constant functions (resp. locally constant and compactly supported mod- 
ulo U~(F,) functions) r Pj(F,) --+ C which satisfies r -- ~bt(u)r for any 
u E U~(F,) and p E Pj(F~). The following Lemma is proved by the same method 
as [G-K, Proposition 2]. 

LEMMA 8: Let 1 <_ j <_ n. If V is a nonzero Pj(F~)-invariant subspace of 
i .Pj(Fv) . ,Pj(F,) , n(:lv~(F~) Ct, then V contains the space c-maVdF~ ) ~p~. 

By using this Lemma when v splits in E and the standard argument (cf. [G-P, 
Proposition (12.4)]), we obtain the following: 

LEMMA 9: Let v be any finite place. 
(1) There are W~,o, Wl~,o and ~1.,o such that J~(s, W,~,o, W~,o,~ P~.o. ) = 1. 
(2) There are W*,o and W'.,o such that J*(s, W*,o, W~,o) = 1. 

Summing up Lemmas 2-9, we obtain the following: 

PROPOSITION: For an appropriate choice of ~o E V~, fo E I(~r) and 770 E 
S(RE/F(Mn,1)(A)), one has 

( H ) L s ( s + l / 2 ,  a x ( l r |  
J(s,~o,fo,7?o) = J~(s'Wv'~176176 Ls(2s + 1,r ,  rl) ' 

kvESo~ 

where Soo is the subset consisting of infinite places in S. Similarly, for an 
appropriate choice of qo~ EVa*, and fo E I(Tr), one has 

(eX~so ~ ) L s ( s + l / 2 ,  a x l r )  g*(s,~;,fo) = 3*(s'W*'~176 Ls(2s + l , r ,  rl) 

5. A compar i son  of  L-funct ions in a t h e t a  series lifting 

Define the unitary group H = U(n(2n + 1), n(2n + 1)) by the group consisting 
of elements h E RE/F(GL2n(2,~+I)) satisfying 

th ( 0 1n(2n+1))~__ ( 0 in(2n+D ) 
--ln(2n+l ) 0 --ln(2n+l ) 0 " 
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We define the Well representation w j = .n(2n+D w~,v of H(A) acting on the space 

,-q(RF~/F(Mn(2n+I))(A)) the same way as in Section 3. Since G* (A) xG(A) modulo 

{(t12,+l,t12n): t E A~, t t  = 1} is embedded in H(A), the representation w ~ 

can be restricted to G*(A) x G(A). We identify S(RE/F(M,~(2n+I))(A)) with 

,-q(RE/F(M2n,n)(A) @ RE/F(Mn,1)(A)). If ~] is of the form ~] -- 711 | ~]2, 771 E 

$(RE/F(M2n,n)(A)), ~2 ~ $(RE/F(M,~,i)(A)), then the action of M*(A) x G(A) 

to ~] is described as follows (cf. [Wal]): 

(5.1) 
= v(c)nv(det a) 2nv(det g)U I det al~ E ?71(g-lxa)w~,~.(g)~2 (~Y). 

For ~ EVa and ~] E 8(RE/F(M2n,n)(A) (~ RE/F(Mn,1)(A)), the theta series lift 
$ ~ is defined to be 

~ ( h )  = / c  v(det gh)-n~(g) 
(F)\G(A) 

We put 

E w'(h, g)~?(x, y)dg. 
xERE/F(M2n,~)(F) 
yERE/F(M~,I)(F) 

O~,v(ir ) = {~0~: ~9 EVa, r] C 3(RE/F(M2n,n)(A) (~ RE/F(Mn,1)(A))}. 

By assumption W(a , r  ~ 0 and [Wal, Theorem 5.6] it is known that O~,v(a ) 

is a nonzero automorphic representation of G*(A) and its ~b*-Whittaker model 

is nonzero. The cuspidality criterion of O~,v(a) was given in [Wal, Theorem 

5.3]. Notice that  the definition of O~,~ is slightly different from the definition of 

10'~ in [Wal]. There is a relation O~,v(a) = lon(a | V - n )  | v -n. Therefore, 

O~,~(a) is cuspidal if and only if the analogous lifting , -1  O~,~ (a) of a to the space 

of automorphic forms on the unitary group U(n-  1,n)(A) vanishes. Here we 

correct some misprints in the statement of [Wal, Theorem 5.3 (ii)]. The correct 

statement is the following: "Assume n = 1. Then 101(7r) is cuspidal if and only 

if 7r | u o det is orthogonal to Ore(# -1, v - l )  ''. Unfortunately, the irreducibility 

of O~,,(a) is unknown in general. 

In the following, we compute Ls(s, O'~,~(a) x zc) provided that O~,v(a ) is cus- 

pidal and irreducible. To mention a statement, let ~ be the cuspidal represen- 

tation of M(A) given by ~(m) = zr(m) for m E M(A). The Whittaker model 

W(~, r 1) is equal to the space {W~: W ~ E W(r , r  where W ~ is defined to 

be W~ (m) = W'(m). Let L(s,~) = 1-I~ L,~(s,~w) be the standard L-function of 

as a cupidal representation of GLn (Am), where w runs over all places of E. For 

convenience, if v E VF is a finite place such that ~ ,  is unramified, then we put 

S L,~(s,-~,,) if v = w on E, 
Lv(s,~) 

I Lwl(s,~,~)L,,2(s,~,,2) if v = wiw2 on E. 
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THEOREM: Assume that a* = Ot,,,(a ) is cuspidal and irreducible. Then one _has 

Ls(s,a* x zr) = Ls(s,~)Ls(s,a x (~ |  v)). 

Proo~ We recall a relation between the Whittaker functions Wqo and W~o; (cf. 

[Wal]). Put  

r ' = .(A) 

Then we have 

yo = ~ �9 M~:(F). 

I v  v(detgh)-nW~(g)q~(w'(h, 12n)7?)(g)dg. (5.2)  = (A)\G(A) 

Let r be an irreducible finite dimensional representation of the maximal compact 

subgroup K and ~ be the corresponding elementary idempotent. For (I) E V~, 

we define f~ �9 I(~r) by 

= f q~(mk')~(k-lk')dk ' (u �9 N(A), m �9 M(A), k �9 g ) .  f$(umk) 
JK riM(A) 

If (I) is nonzero, then f~ is nonzero for an appropriate r. By the basic identity 

and (5.2), we have for Re(s) > >  0 

= f w (g) J*( s ,~ , ]~ )  
Ju (A)\C(A) 

X :M(A) v(det gm)-'~w' (t(m), g)Tff (xo, Yo)We (m)c~(m) ~-~/2 dmdg, 

where we put 

rfl'(xo, Y0) = / g  v(det k)-n~(k-1)w'(~(k), 12n)r/(x0, yo)dk. 

We assume that rfl is of the form rfl = r/1 | r/2. It follows from (5.1) that 

v(det gm(a))-~w'(L(m(a)), g)Tff (Xo, Y0) = I det al~ ~1 (g-lxo-d)w(g)~2 (Yo). 

Here note that v(det re(a)) = v(det a) 2. Define 

-= O~(g ) - s - n / 2  J GfL, ( A~ ) ~1 (g- l xoa)Wr (rn( a ) ) l det hi;; n/2 da. V(w. )(g) 
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It is known by [Wa2] that  the integral on the right hand side converges absolutely 

for Re(s) > >  0 and extends to an entire function on the whole s-plane, and 

furthermore, V~W.,nl ) is contained in I(~, r for all s. Therefore, for Re(s) > >  

O, J*(s,~l,f~ ) is written as 

(5.3) J* (s, qo;, f;) = /u  W~~ (g)R'12 (g)c~(g)8+n/2dg' 
(A)\G(A) 

We further assume that all data are decomposable, i.e. 

wag) = H w~(g.), wr H w'(m(~)), 
~)~VF V~VF 

~(~1= H ~,~(~1, ~(Y)= H ~,~(Y~) 
~)~V F v ~ V F  

Then W ~  and WI~ are also decompsable, so that they are of the form 

w~;(h) = H w:(h~), w~(g)= H w"(~v). 
vEVF vEVF 

If we define the local integral of V(~.,u~) by 

c~.(g) . . . .  /2 JRt~/F(GL~)(Fv ) ~ll,.(g-lxoa)W' (m(a) )lNt~/F(det a)lF+~/~ da 

then (5.3) decomposes to Euler products 

J*(s'q~ H 3*(s,W*,W•')---- 
vEVF 

H J.(s, wo, v(~: o),R,2,~) 
vEVF 

By an analogous calculation as above, we have 

g;(s,* W~,W;)=gv(s,W~,Y(w:o),R,~,o)* " 

for each v C VF. We compute the unramified factors. For v C VF(a,  a*, #, /J), 

let W. and Wv t be class 1 Whittaker functions, T. be the trivial representation 

of Kv and T/l,. (resp. ~/v,2) be the characteristic function of the standard lattice 

in RE/F(M2n,n(Fv)) (resp. RE/F(Mn,1)(Fv)). Then both W* and W" are also 
class 1 Whittaker functions. On the one hand, by Lemma 2, we have 

Lv(s + 1~2, or* • ~cv) 
3~(s'W*'W~v')= Lv(2s+ l, Tr.,rl) 
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However, by [Wa2], it follows that  

,S - - !  

V, W, . = L . ( s  + 1 /2 ,~ . )W . .  
( v ,~ l , v )  

Thus, by Lemma 3, we have 

Jv(s, Wv, V~-~.., . Rn2, . )= L ~ ( s + l / 2 , ~ ) L . ( s + l / 2 ,  a.  x (~v|  
(~,n~, .) '  Lv(s + 1 /2 ,~v ,r l )  

Notice that  Lv(s, ~v, rl)  = Lv(s, zc., rl). Consequently, we obtain 

(17[ ) L (s + 1/2,o* • 
W~') Ls(2S + 1, ~ , r ] )  

= , VS--, , R Ls(2s  + 1, ~, r l )  
Jv(s, Wv (Wv,~l,v) ~2,v) L s ( s + l / 2 , K ) L s ( s + l / 2 ,  a (K |  

\ y e s  

By analytic continuation, this equation holds for all s C C. For each v E S and 

a given so E C, the space 

{Vw;,, , ,  IM(F.): W~ e W(Trv,•vl), /]l,v e S(RE/F(M2n,n)(Fv))}  

equals W(~v,  ~)v 1) (cf. [Wa2]). By Lemmas 5 and 9, we can choose Wv, V L ,  (w~,,1,v) 
W ,  B * $ I I  and r/2,v such that  Jr(s, v, V(W,,m,~), R~2,o) -- J~ (s, W~, W" ) is not identically 

zero. This completes the proof. | 
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